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1 Data and data pre-processing

In a recent study (Weingarten-Gabbay et al., 2016) we described a high-throughput IRES activity assay that we
used to measure IRES activity for thousands of sequences including 28,669 native fragments from the human and
viral genomes. Briefly, we obtained a mixed pool of oligonucleotides, 210nt (174nt variable region plus constant
primer sequences) in length, using parallel DNA synthesis technology (Cleary et al., 2004; LeProust et al.,
2010; Sharon et al., 2012). We then amplified the library using constant primers, cloned it into the lentiviral
bicistronic plasmid 12nt upstream of the eGFP (enhanced Green Fluorescent Protein) coding sequence (Fig. 1A)
and infected H1299 human lung cells so that each cell integrates a single oligo. In this plasmid mRFP (monomeric
Red Fluorescent Protein) is translated in a cap-dependent manner, whereas eGFP translation requires alternative
mechanisms. We thus used eGFP expression as a proxy for IRES activity induced by the variable sequence. To
obtain eGFP expression we sorted the resulting pool of cells into 16 bins according to eGFP fluorescence, while
also filtering based on mRFP fluorescence to control for cell state, and used deep sequencing to compute a score
for the expression of each designed oligo based on the distribution of its sequence reads across expression bins.
Using this approach, we measured IRES activity of a library of 55,000 sequences.

IRES activity measurements analysed in this work are complemented by high-throughput measurements of
splicing activity and promoter activity (Weingarten-Gabbay et al., 2016). As in the original manuscript, these
additional measurements were used to filter out unreliable sequences, i.e. sequences whose eGFP expression was
likely to be a result of cap-dependent translation due to (i) the mRFP and the assayed sequence being spliced
out using a splice acceptor site present in the assayed sequence, or due to (ii) independent transcription of the
eGFP from a cryptic promoter in the assayed sequence. To this end, following Weingarten-Gabbay et al., all
oligos with splicing scores below −2.5 or promoter activity above 0.2 were removed from the analyses. To further
reduce the fraction of oligos, for which eGFP translation could be a result of splicing, we additionally removed
all positive sequences (IRES activity above background levels) for which splicing activity could not be measured.

Several filtering and averaging steps were taken in order to obtain more reliable estimates and to increase
robustness of the learned sequence models. First, for all analyses measured IRES activities were log2-transformed
and averaged across the two replicates. Then, IRES sequences that had background IRES activity levels in only
one of the replicates, and sequences that could be measured in at least one of the replicates were filtered out.
Finally, to reduce the affect of outlier sequences with very high IRES activity on the learned predictive models,
IRES activities were capped at the 99.5% percentile.
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Further, because sequences outside of the 174nt variable region can affect IRES activity (e.g. by forming sec-
ondary structure with the variable region), for our analyses we extended the variable region by 84nt downstream
and 74nt upstream as shown in Fig. 1A (solid filling).

2 Random Forest parameter grid search

When learning random forests, parameters were chosen using a grid search performed on the inner CV loop
that evaluated all possible parameter combinations. The learning rate r, minimum number of leaf node training
samples m and subsampling fraction f parameters were chosen in this way from grids [0.001, 0.002, 0.004, 0.008],
[5, 25, 125] and [0.9, 0.7] respectively.

3 Detailed analysis of the upstream CAG feature

The CAG k-mer in Fig. 5B does not share positional preferences of other features for locations around −50 or
−150; instead its effect is strongest when it is located close to the start AUG at positions [−30, 0]. We expected
that if this k-mer is a part of the optimal translation initiation context or splicing signal, then it would show
further position or reading frame preferences within the [−30, 0] window. To check this, we analysed CAG
position preferences, sequence around CAG, and splicing score difference between sequences with and without
CAG for the groups of dsRNA viruses and retroviruses. These groups were chosen as they are the two most
specific sequence groups for which this feature was consistently selected across all CV folds and had a strong
effect.

First, we compared position distributions for CAG within the [−20, 0] window between positive and negative
dsRNA virus sequences. Fig. SI-1A shows a strong preference of the CAG k-mer in dsRNA virus IRES sequences
for position −15, i.e. the end of the variable part of the assayed sequences (positions [−12; 0] are the same for
all sequences; see Fig. 1A). We then sought to determine whether this k-mer is a part of a larger sequence motif
and checked for position-specific nucleotide enrichment between the sets of positive and negative dsRNA virus
sequences with a CAG in the [−20, 0] window. Fig. SI-1B shows a significant (Binomial test p < 0.05; visualised
using the Two Sample Logo website, Vacic et al. (2006)) enrichment for Us upstream of the CAG k-mer; the
downstream part was not included in the analyses due to the strong preference of the CAG for positions right
before the constant part of the sequences. Remarkably, the enriched sequence resembles the canonical splice
acceptor motif of poly-U followed by N[CT]AGG (Rosenberg et al., 2015), suggesting that the CAG k-mer may
be a part of a splicing site located at the end of analysed IRES sequences.

Presence of such a splicing site may lead to the loss of mRFP and the assayed IRES sequences in spliced
mRNAs and result in translation of the eGFP protein through classical cap-dependent initiation mechanisms.
To confirm that this is indeed what may be happening, we compared distributions of splicing scores from
Weingarten-Gabbay et al. (2016), which are indicative of the log2 splice-in ratios for the assayed sequences,
between positive dsRNA virus sequences with a CAG in the [−20, 0] window and without it. Fig. SI-1C shows
that IRES sequences with a CAG k-mer in the given window tend to have significantly smaller splicing scores
than the sequences without it (Mann-Whitney U-test, p < 0.001), suggesting that the +CAG sequences are
spliced more often.

We repeated the above analyses for the retroviral group, and found that it only partially recapitulates the
results obtained for the group of dsRNA viruses. In particular, while we found a similar poly-U enrichment
upstream of the CAG, there was no longer a strong preference for position −15, and the difference in splicing
scores between −CAG and +CAG sequences was not present. Neither the reason for differences in position
preferences between dsRNA viruses and retroviruses, nor a possible mechanism that could link CAG −15 position
preference and splicing activity, are clear to us.

Presence of active splicing signals in IRES sequences is problematic for the IRES activity assay, as its
measurements may be inflated by eGFP produced via cap-dependent translation mechanisms. However, our
analyses of predictive RNA sequence features across different groups of sequences suggest that splicing signals
may only moderately effect IRES activity measurements, since only a handful of presented sequence features
could be linked to the splicing mechanism. Moreover, the sequence overlap between the splicing acceptor motif
and the hnRNAP C1/C2 ITAF binding motifs, both of which require the presence of a poly-U stretch, suggests
that co-occurrence of splicing and IRES activity is a general phenomenon. This is supported by the fact that
most of the known ITAFs have also been implicated in pre-mRNA splicing (Hernandez, 2008); and by the
existence of IRESs, such as XIAP, which are known to contain splice sites (Riley et al., 2010).
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Figure SI-1: Detailed analyses of the CAG k-mer within the [−20, 0] window of the dsRNA viruses group (top row,
A-C) and within the [−30,−10] window of the retroviruses group (bottom row, D-F). (A, D) position preference;
(B, E) enriched motif around the k-mer; and (C, F) distribution of splicing scores for positive sequences with
(+CAG) and without (−CAG) the k-mer in the corresponding window.

4 RNA secondary structure features

Because RNA structure is considered to be a major determinant of IRES activity in known IRESs, we sought to
incorporate it in our prediction models. To this end several features describing RNA structure and accessibility
were calculated for all sequences and, after applying the same feature pre-selection as in the case of k-mer counts,
were used as predictive model features.

4.1 RNA accessibility and region interaction

First, we attempted to describe RNA structures in terms of accessibility and region interactions. To account for
local context effects, secondary structures were predicted for sequences with regions flanking them in the reporter
construct (Fig. 1A). RNA base pairing probabilities were computed by folding the entire sequence (330nt) using
the Vienna RNA package (Lorenz et al., 2011) with default settings.

We defined RNA accessibility of a region as the expected number of unpaired nucleotides in this region.
The intuition behind this definition is that if a region is highly paired, it is unavailable for interactions with
RNA-binding proteins (RBPs) required to initiate translation or with the ribosome itself. This measure was
calculated as region length minus the sum of base pairing probability matrix (BPPM) columns corresponding to
that region. Similarly, to capture high-level RNA secondary structure, we defined the RNA interaction measure
of two regions as the expected number of paired nucleotides between the two regions; and calculated it as the
sum of elements in the BPPM located at the intersection of rows corresponding to the first region and columns
corresponding to the second region.

RNA accessibility and interactions features were calculated for 10nt moving windows of the folded sequence.
These features showed weak (Spearman |ρ| ≤ 0.13), but consistent correlations across different sequence groups.
Specifically, RNA accessibility shows a reproducible pattern of negative-positive-negative correlation with IRES
activity in region [0, 50] and a similar, although weaker, correlation pattern for region [−270,−230] (Fig. SI-2A).
Because we expected that RNA accessibility correlations would be easier to interpret as a product of individual
region interactions, we also computed correlations between RNA region interaction features and IRES activity
(Fig. SI-2B). Correlation pattens observed for region interaction features suggest that (i) pairing between the
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Figure SI-2: (A) RNA accessibility correlations for 10nt moving windows with a step of 5nt; and (B) RNA region
interaction correlations for moving 10nt×10nt regions with a step of 5nt computed for different sequence groups.
Correlations for overlapping windows (regions) were averaged.

region located immediately upstream of position −250 or the region located immediately downstream of position
50 with any other region negatively correlates with IRES activity (predominantly red columns and rows are
observed around these positions across all sequence groups); (ii) interactions of regions around the start AUG

with nearby regions show strongest correlations with IRES activity (as can be readily seen from the dark
gray/red spots around the origin for the Retroviruses and Human 5′ UTR sequence groups in Fig. SI-2B). These
correlations suggest that the RNA structure formed by the three mentioned regions may play a role in the
mechanism of IRES-mediated translation.

Given these observed correlations, we sought to improve our Random Forest models by including RNA
accessibility and region interaction features. We followed the same feature pre-selection procedure as described
for k-mer features in the main text, and considered different feature combinations, but did not observe any
improvement in predictor accuracy beyond what could be achieved using k-mer features alone (see Fig. SI-4A).

4.2 Accessible k-mer counts

Having observed good predictive power of k-mer features and no improvement in predictor performance when
näıvely combining RNA structure or accessibility features with k-mer features, we sought to combine the two
feature descriptions in a more in a more direct manner. To this end we modified k-mer count features to produce
counts of accessible k-mers by summing k-mer accessibilities instead of occurrences. k-mer accessibilities were
calculated as RNA accessibility measurements for regions occupied by k-mer occurrences and normalised by
k-mer length. To include accessible k-mer count features in our models, we followed the same feature pre-
selection and combination procedure as described for k-mer count features. Unfortunately, as in the case of
RNA accessibility and interaction features, we did not observe an increase of model predictive power beyond

4



A

B

Figure SI-3: Performance of RF predictors trained with RNA structure features. Cross-validation performance
of models for difference groups of sequences trained on combinations of (A) k-mer count for k = 4, accessibility
and region interaction features; and (B) accessible k-mer count features.

what can be achieved by k-mer count features alone (see Fig. SI-4B).

5 Group sequence permutation

Separation of sequences into n = 7 groups based on their species and origin resulted in differences in predictive
power between groups. These differences may arise due to group-specific IRES mechanisms being captured by
the learned models, or due to group structure (i.e. the number of positive and negative sequences). To see
whether the observed variation in the defined groups is higher than the variation one would expect from group
structure alone, we performed 10 permutation experiments. In each experiment positive and negative sequences
were independently permuted across groups, thus preserving group structure, and models were learned on the
permuted groups for each combination of features and k-mer lengths as before. Cross-validation (CV) predictive
power of models learned on the permuted groups were used to obtain 10 samples of variation that can be expected
due to group structure alone (green boxplots in Fig. SI-4). These samples were used to arrive at p-values for
the variation observed in defined groups (orange dots in Fig. SI-4) by assuming that they follow a scaled χ2

distribution with n − 1 degrees of freedom and scaling factor n−1
σ2 , where σ2 is the unknown true variance
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Figure SI-4: Variation in predictive power (R2) between groups for randomly permuted (green) and defined (or-
ange) groups for different feature combinations (left, middle and right sub-figures) and k-mer lengths. Observed
variations in the defined groups are annotated with the corresponding p-values.

estimated as mean of the 10 permutation variances (Knight, 1999). Fig. SI-4 shows that variation observed in
defined groups is significantly higher than what can be expected due to group structure alone for the majority
of feature and k-mer length combinations (p < 0.05 for k > 2), suggesting that the sequence groups we defined
in the main text capture group-specific mechanisms of IRES translation.

6 Feature importance and partial dependence

When training a RF, tree node variables and splits are chosen to maximise the reduction in weighted variance
between the node itself and the two children produced by the node split. Formally, if p, l and r are respectively
the current node, and its left and right children; and Snv,s = {(x, y)} are the sets of training samples assigned to
nodes n = p, l, r created for feature v and split s, and given as (feature vector, IRES activity) pairs, then feature
v and split s are chosen for node p (concisely written as V (p) = v and S (p) = s) by maximising

Cp = Var(x,y)∈Sp (y) · |Sp| −
[
Var(x,y)∈Sl (y) ·

∣∣Sl∣∣+ Var(x,y)∈Sr (y) · |Sr|
]
,

where Var(x,y)∈Sn (y) gives the variance off all IRES activity values in Sn, and |Sn| gives the number of elements
in Sn. Intuitively, the more a variable v is used in the RF trees, and the higher the values Cp are for nodes
associated with this variable, the more predictive of IRES activity it is. For our analysis we used feature
importance as defined in Hastie et al. (2005), which captures this intuition by accumulating values Cp for all RF
trees t ∈ T and all nodes p assigned to variable v when calculating its importance Iv:

Iv =
1

|T |
∑
t∈T

∑
p∈{p|p∈t∧V (p)=v} C

p∑
u

[∑
p∈{p|p∈t∧V (p)=u} C

p
] .

These feature importances were additionally normalised by the maximum Iv to allow for comparison of
feature importances between models trained on different sequence groups:

Ĩv =
Iv

maxu Iu
.

A Random Forest f (x) = f
([
x1 . . . xM

])
trained on samples {(xj , yj)|j = 1 . . . N} and M features can be

used to investigate the relationship between each its features and the RF prediction. In order to understand the
relationship between the ith variable and the prediction f(x) we considered its partial dependence on the RF
prediction function f , as described in Hastie et al. (2005):

fi
(
xi
)

= Exi

[
f
(
x1, . . . , xi, . . . , xM

)]
,

which for RFs can be efficiently estimated using the training samples xj as

f̂i
(
xi
)

=
1

N

N∑
j=1

[
f
(
x1j , . . . , x

i, . . . , xMj
)]

.

We used the latter estimation in our model interpretation analyses.
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Figure SI-5: Cross-validation performance of the trained RF models selected for interpretation in the main text,
as evaluated by (A) the Receiver Operating Characteristic (ROC) curve, and (B) the Precision-Recall (PR)
curve. Curves for the trained models are shown as blue lines, and are compared to curves for random predictions
(red dashed lines).

7 Model evaluation using the AUC-ROC and AUC-PR measures

To assess the models ability to separate positive and negative IRESs (i.e. sequences with IRES activity above
and below background levels) in addition to their ability to predict exact IRES activity levels (as assessed by
the R2, Pearson r and Spearman ρ correlation measures), we calculated the Area Under the Receiver Operating
Characteristic curve (AUC-ROC) and the Area Under the Precision-Recall curve (AUC-PR) metrics for our
models. These metrics are commonly used to evaluate performance of binary classifiers, with the latter typically
employed when the classification problem is imbalanced (Davis and Goadrich, 2006), i.e. has many more samples
in one class than in the other. The use for AUC-PR is particularly meaningful for the data available for training
our models, as it contains many more negative IRESs than the positive ones (≈ 89% of measured sequences have
background activity levels).

Because the AUC-ROC and AUC-PR measures are not directly applicable to the evaluation of regression
models, such as the Random Forest regression models used in the manuscript, we use the models predicted IRES
activity to assign a sequence to the positive or negative class based on a decision threshold. Iterating over all
possible thresholds then allowed us to construct the ROC and PR curves, as shown in Fig. SI-5 (blue lines).
Area under these curves then gives the sought AUC-ROC and AUC-PR measures. A similar procedure was used
to determine the ROC and PR curves of random predictions. As can be seen from Fig. SI-5, our models perform
significantly better than random predictions, indicating that they generalise well on unseen data.
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Figure SI-6: Cross-validation performance of SVR models. (A) For different groups of sequences, feature com-
binations and k-mer lengths. Selected combinations are marked with a circle. k-mer count features are depicted
as solid lines, whereas k-mer presence features are depicted as dashed lines. (A) the Receiver Operating Char-
acteristic (ROC) curve and (B) the Precision-Recall (PR) curve for the selected combinations. Curves for the
trained models are shown as blue lines, and are compared to curves for random predictions (red dashed lines).

8 Comparison to Support Vector Regression

We sought to compare the RF regression approach, employed for modelling IRES activity and identifying se-
quence features predictive of it, to alternative machine learning methods. We chose to compare RF regression to
Support Vector Regression (SVR) (Drucker et al., 1997), as it is an established regression method that allows for
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Figure SI-7: (A) Training and test performance of selected SVR models for each of the sequence groups. (B)
Scatter plots of true vs. predicted IRES activity for these models with colour representing the local point density
(blue to red as low to high density). Mean Squared Error (MSE) for each of the scatter plots is also provided.

construction of interpretable models, thus providing a fair comparison to RF. To ensure that the the evaluation
is as fair as possible, we kept all the steps performed prior to model training (i.e. data pre-processing, filtering
and k-mer feature pre-selection) the same, and only swapped the RF model training by that of ε-SVR (Drucker
et al., 1997). Further, the models were trained on the same sequences groups, feature combinations and for the
same k-mer lengths as the RF models in the main text.

Optimal parameters for the SVR models were determined using grid search maximising the R2 metric inside
the double-loop CV described before. Model parameters ε and C were sought among the following values:
ε ∈ {0.001, 0.003, 0.009, 0.027, 0.081, 0.243} and C ∈ {0.027, 0.081, 0.243, 0.729}. This range of values allowed for
achieving some of the best results observed for SVR on the considered problems (data not shown) at reasonable
computational cost. To keep the resulting models interpretable, we used a linear version of the SVR (i.e. no
kernels employed). Finally, prior to training, all features and the log2 IRES activities we rescaled to the range
[−1,+1]; feature scaling based on the training set was also applied at model evaluation time, and the predictions
were scaled back to their original value range.

Performance of the trained models is shown in Fig. SI-6. It can be seen from the figure that, compared
to the RF models, SVR achieves inferior performance in terms of the R2, and the AUC-ROC and AUC-PR
metrics demonstrated for models with global and positional 5-mer features. We note that unlike the RF models,
the performance of SVR does not level off at k = 5 and could possibly improve with longer k-mers. However,
since the fraction of sequences with an exact match for k-mer of this length approaches 10−3 (see Fig. SI-
10), it is unlikely that further performance improvement could be achieved with long k-mer without changing
the feature representation (e.g. by allowing inexact k-mer matches). Together, the results of the comparison
suggest that for the available data, and the k-mer feature representation described in the manuscript, unless
model interpretability can be sacrificed by using SVR kernels, Random Forests should be preferred over SVR
for modelling IRES activity.
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Figure SI-8: (A) Training and test performance of RF models selected for interpretation in the main text for
each of the sequence groups. (B) Scatter plots of the true vs. predicted IRES activity for these models with
colour representing the local point density (blue to red as low to high density). Mean Squared Error (MSE)
for each of the scatter plots is also provided. (C) Comparison of the SVR and RF model performance for all
sequence groups and metrics.

For completeness, we also present the scatter plots of the predicted and measured IRES activity, and a
summary figure with all considered evaluation metrics for the chosen SVR models in Fig. SI-7. We also provide
the corresponding plots for the RF models described in the main text (Figs. SI-8A and B), and finally, to facilitate
comparison, we include a visualisation of the cross-validation performance for both modelling approaches in
Fig. SI-8C.
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9 Comparison of the predictive and enriched k-mers

Using the Random Forest training approach (see Fig. 1 and Material and Methods section of the manuscript) we
identified robust and predictive k-mer features for each of the considered sequence groups. These k-mer features
were then interpreted in terms of their effect on IRES activity suggested by the trained models (see Results and
Discussion sections of the manuscript). Although these features were selected based on a modelling procedure
that learns to predict IRES activity from sequence, and through this should be related to IRES mechanisms, we
sought to obtain further confirmation of this. To this end we calculated p-values for the enrichment of k-mers
(present anywhere in the sequence) in the set of positive sequences (IRES activity above background levels)
relative to the set of negative sequences (background IRES activity) for all possible 4-mers using the Fisher’s
exact test, and compared the distribution of these p-values between all possible 4-mers and the subset of 4-mers
identified as robust and predictive by our models. As expected (see Fig. SI-9), on average, the 4-mers identified
by the RF models tend do have more significant p-values than the set of all possible 4-mers (all differences
between the p-value distributions are significant according to the Mann-Whitney U -test), further emphasing
that the k-mers uncovered by our models do not stem from high abundance in the analysed dataset, but are
true predictive features of IRES activity.
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